README.md
Staged
Commit
push
tidyverse
library(tidyverse)
install.packages()
library()
rnorm
diamonds
glimpse(diamonds)
summary(diamonds)
read_csv()
"./data/tiny.csv"
vignette(package = ???)
vignette(???, package = "dplyr")
dplyr
e-setup02-functions
cut_number
R
1, 2, 3
c()
4
vec_q1
v_string
cut
color
clarity
ggplot
price
carat
e02-data-basics
_time
dest, origin, carrier
air_time
air_time, dest
geom_bar()
cty, hwy
mpg
summarize()
Ideal
n_ideal
group_by()
q1-vis1
q1-vis2
facet_wrap()
class
scales
data
p01-name
.gitignore
min = -1
max = +1
d
Z
df_q2
n
n_diamonds
df_base
df_q3
df_q4
df_q5
exercises
exercise
e-rep-05-collab-assignment.Rmd
$ git push
cut_*
carat >= 2
flip
count_total
count_A
fr
pnorm
Z ~ norm(mean = 0, sd = 1)
unite
genes
punnett
separate
alloys_mod
geom_smooth
cty
NA
mean
dep_delay
quantile
sd()
IQR()
sd
IQR
x, y
slope
bind_cols
beatles3
beatles1
criteria
flights
dest
month
geom_line
manual
str_detect()
trans
str_remove()
names_pattern
alloys
theme_void()
guides()
theme_common()
theme()
.
se_q2.1
hwy
z_q1
while
vars_lagged
c_meas
c_true
df_q1.
c_michelson_uncertainty
map_chr()
"N: "
v_nums
str_c()
map_dbl()
log
base = 2
log()
continent
gapminder
fct_reorder()
manufacturer
x
df_data_norm
fitdistr()
"weibull"
y
df_data_weibull
shape_est
scale_est
Y <= 2
mutate()
df_resample_norm
mean_est
recall-fitdistr
int_pctl()
bootstraps()
rnorm(mean = 0, sd = 1)
0.95
n_boot
googlesheets4
Responses
Create Spreadsheet
Create a new spreadsheet
ex-mpg-manufacturer
e-stat09-bootstrap
rnorm(mean = 1, sd = 2)
n = 400
diamonds_train
q2-vis
Y
0.1
vis-carat
fit_q1
mse
rsquare
fit_carat
add_uncertainties()
df_train
fit_4c
col_names
col_types
col_number()
convert_sex
convert_
Predicted
degree = 17
df_measurements
diamonds_train_bad
diamonds_validate_bad
carat <= 1
Government-Wide Financial Analysis
df_data
df_validate
pr_heart_disease
fit_baseline
TPR
pr_threshold
%/%
row_number()
id
date
10