17 Data: Isolating Data

Purpose: One of the keys to a successful analysis is the ability to focus on particular topics. When analyzing a dataset, our ability to focus is tied to our facility at isolating data. In this exercise, you will practice isolating columns with select(), picking specific rows with filter(), and sorting your data with arrange() to see what rises to the top.

Reading: (None, this is the reading)

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(nycflights13) # For `flights` data

We’ll use the nycflights13 dataset for this exercise; upon loading the package, the data are stored in the variable name flights. For instance:

flights %>% glimpse()
## Rows: 336,776
## Columns: 19
## $ year           <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2…
## $ month          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ day            <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ dep_time       <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 558, …
## $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 600, …
## $ dep_delay      <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2, -1…
## $ arr_time       <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 849,…
## $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 851,…
## $ arr_delay      <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7, -1…
## $ carrier        <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6", "…
## $ flight         <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301, 4…
## $ tailnum        <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N394…
## $ origin         <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LGA",…
## $ dest           <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IAD",…
## $ air_time       <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149, 1…
## $ distance       <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 733, …
## $ hour           <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6…
## $ minute         <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 0…
## $ time_hour      <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-01 0…

17.1 select() columns

Sometimes, our data has so many columns that it’s just overwhelming. The flights dataset only has 19 columns, but that’s already quite a bit to deal with. Thankfully, we can select() a subset of columns to focus on a few at a time. To select a column, we simply provide its name:

## NOTE: No need to edit
flights %>% 
  select(flight, carrier, dep_time)
## # A tibble: 336,776 × 3
##    flight carrier dep_time
##     <int> <chr>      <int>
##  1   1545 UA           517
##  2   1714 UA           533
##  3   1141 AA           542
##  4    725 B6           544
##  5    461 DL           554
##  6   1696 UA           554
##  7    507 B6           555
##  8   5708 EV           557
##  9     79 B6           557
## 10    301 AA           558
## # ℹ 336,766 more rows

This is fine when we know exactly what we’re looking for. But select() is even more powerful when combined with selection helpers.

17.1.1 Matching selection helpers

The following helpers perform different kinds of column matching:

  • starts_with(str): all columns that start with the prefix str
  • ends_with(str): all columns that end with the suffix str
  • contains(str): all columns that contain the substring str
  • matches(expr): matches a regular expression expr*
  • numrange(): builds ranges of variables, like "x0", "x1", "x2", ...

*We’ll learn more about regular expressions in e-data06-strings

We use selection helpers inside select(), just like we’d provide a column name.

flights %>% 
  select(starts_with("dep_"))
## # A tibble: 336,776 × 2
##    dep_time dep_delay
##       <int>     <dbl>
##  1      517         2
##  2      533         4
##  3      542         2
##  4      544        -1
##  5      554        -6
##  6      554        -4
##  7      555        -5
##  8      557        -3
##  9      557        -3
## 10      558        -2
## # ℹ 336,766 more rows

17.1.2 q1 Select matches

Select all the variables whose name ends with _time.

df_q1 <- flights %>% select(ends_with("_time"))
df_q1
## # A tibble: 336,776 × 5
##    dep_time sched_dep_time arr_time sched_arr_time air_time
##       <int>          <int>    <int>          <int>    <dbl>
##  1      517            515      830            819      227
##  2      533            529      850            830      227
##  3      542            540      923            850      160
##  4      544            545     1004           1022      183
##  5      554            600      812            837      116
##  6      554            558      740            728      150
##  7      555            600      913            854      158
##  8      557            600      709            723       53
##  9      557            600      838            846      140
## 10      558            600      753            745      138
## # ℹ 336,766 more rows

The following is a unit test of your code; if you managed to solve task q1 correctly, the following code will execute without error.

## NOTE: No need to change this
assertthat::assert_that(
  all(names(df_q1) %>% str_detect(., "_time$"))
)
## [1] TRUE
print("Nice!")
## [1] "Nice!"

17.1.3 The everything() helper

There’s another strange helper: everything(). This seems useless at first, until we realize that we can first re-arrange the other columns, then put everything() else at the end!

flights %>% 
  select(year, month, day, sched_dep_time, everything())
## # A tibble: 336,776 × 19
##     year month   day sched_dep_time dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>          <int>    <int>     <dbl>    <int>          <int>
##  1  2013     1     1            515      517         2      830            819
##  2  2013     1     1            529      533         4      850            830
##  3  2013     1     1            540      542         2      923            850
##  4  2013     1     1            545      544        -1     1004           1022
##  5  2013     1     1            600      554        -6      812            837
##  6  2013     1     1            558      554        -4      740            728
##  7  2013     1     1            600      555        -5      913            854
##  8  2013     1     1            600      557        -3      709            723
##  9  2013     1     1            600      557        -3      838            846
## 10  2013     1     1            600      558        -2      753            745
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

17.1.4 q2 Re-arrange the columns

Re-arrange the columns to place dest, origin, carrier at the front, but retain all other columns.

Hint: The function everything() will be useful!

df_q2 <- flights %>% select(dest, origin, carrier, everything())
df_q2
## # A tibble: 336,776 × 19
##    dest  origin carrier  year month   day dep_time sched_dep_time dep_delay
##    <chr> <chr>  <chr>   <int> <int> <int>    <int>          <int>     <dbl>
##  1 IAH   EWR    UA       2013     1     1      517            515         2
##  2 IAH   LGA    UA       2013     1     1      533            529         4
##  3 MIA   JFK    AA       2013     1     1      542            540         2
##  4 BQN   JFK    B6       2013     1     1      544            545        -1
##  5 ATL   LGA    DL       2013     1     1      554            600        -6
##  6 ORD   EWR    UA       2013     1     1      554            558        -4
##  7 FLL   EWR    B6       2013     1     1      555            600        -5
##  8 IAD   LGA    EV       2013     1     1      557            600        -3
##  9 MCO   JFK    B6       2013     1     1      557            600        -3
## 10 ORD   LGA    AA       2013     1     1      558            600        -2
## # ℹ 336,766 more rows
## # ℹ 10 more variables: arr_time <int>, sched_arr_time <int>, arr_delay <dbl>,
## #   flight <int>, tailnum <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>

Use the following to check your code.

## NOTE: No need to change this
assertthat::assert_that(
  assertthat::are_equal(names(df_q2)[1:5], c("dest", "origin", "carrier", "year", "month"))
)
## [1] TRUE
print("Well done!")
## [1] "Well done!"

Since R will only show the first few columns of a tibble, using select() in this fashion will help us see the values of particular columns.

17.2 filter() rows

With analyzing data, we’re often looking for rows that match particular criteria. To find rows, we can use filter() along with logical statements. For instance, we could select only those rows where the flight was in February (month == 2).

flights %>% 
  filter(month == 2)
## # A tibble: 24,951 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     2     1      456            500        -4      652            648
##  2  2013     2     1      520            525        -5      816            820
##  3  2013     2     1      527            530        -3      837            829
##  4  2013     2     1      532            540        -8     1007           1017
##  5  2013     2     1      540            540         0      859            850
##  6  2013     2     1      552            600        -8      714            715
##  7  2013     2     1      552            600        -8      919            910
##  8  2013     2     1      552            600        -8      655            709
##  9  2013     2     1      553            600        -7      833            815
## 10  2013     2     1      553            600        -7      821            825
## # ℹ 24,941 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

Important note: Keep in mind that you have to use == to check equality. Using = inside a filter() will raise a helpful error message telling you to use == instead.

## NOTE: Uncomment and run to see the error
# flights %>% 
#   filter(month = 2)

17.2.1 Filter conditions

We can use a variety of conditions with filter():

  • ==: strict equality
  • !=: not equal
  • >, >=: greater than (or equal)
  • <, “<=`: less than (or equal)
  • Logical operations:
    • &: and
    • |: or
    • !: not
    • xor: and/or

17.2.2 Filter helpers

There are also some useful helper functions we can use with filter():

  • is.na(x): Returns rows that contain NaN values
    • Note that we can use !is.na(x) to return non-NaN values
  • between(x, l, r): Returns rows with l < x < r
  • near(x, y): Returns rows where x is “close” to y; we can optionally set the tolerance with tol = ???

17.2.3 q3 Find near-arrivals

Find all the flights where the plane arrived within 10 minutes of its planned arrival time, but was not exactly on time.

Hint: You can use ?flights to look up the units for each column.

## TASK:
df_q3 <- 
  flights %>% 
  filter(
    arr_time != sched_arr_time,
    near(arr_time, sched_arr_time, tol = 10),
  )

df_q3
## # A tibble: 86,700 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      557            600        -3      838            846
##  2  2013     1     1      558            600        -2      753            745
##  3  2013     1     1      558            600        -2      849            851
##  4  2013     1     1      558            600        -2      853            856
##  5  2013     1     1      558            600        -2      924            917
##  6  2013     1     1      559            559         0      702            706
##  7  2013     1     1      600            600         0      851            858
##  8  2013     1     1      601            600         1      844            850
##  9  2013     1     1      602            610        -8      812            820
## 10  2013     1     1      606            610        -4      837            845
## # ℹ 86,690 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
## NOTE: No need to change this!
assertthat::assert_that(
  (
    df_q3 %>%
      summarize(diff = max(arr_time - sched_arr_time)) %>% 
      pull(diff) %>% 
      .[[1]] <= 10
  ) |
  (
    df_q3 %>%
      summarize(diff = max(abs(arr_delay))) %>% 
      pull(diff) %>% 
      .[[1]] <= 10
  )
)
## [1] TRUE
assertthat::assert_that(
  df_q3 %>%
    summarize(diff = max(arr_time - sched_arr_time)) %>% 
    pull(diff) %>% 
    .[[1]] > 0
)
## [1] TRUE
print("Nice!")
## [1] "Nice!"

17.3 Tidyverse quirks

Note that in Tidyverse functions like select() and filter(), we can refer to column names directly—we don’t have to quote them. However, the same doesn’t hold if we’re trying to compare string values. Make sure to quote a string if you’re using it in a filter() comparison!

17.3.1 q4 Fix a bug

Fix the following code. What is the mistake here? What is the code trying to accomplish?

flights %>% filter(dest == "LAX")
## # A tibble: 16,174 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      558            600        -2      924            917
##  2  2013     1     1      628            630        -2     1016            947
##  3  2013     1     1      658            700        -2     1027           1025
##  4  2013     1     1      702            700         2     1058           1014
##  5  2013     1     1      743            730        13     1107           1100
##  6  2013     1     1      828            823         5     1150           1143
##  7  2013     1     1      829            830        -1     1152           1200
##  8  2013     1     1      856            900        -4     1226           1220
##  9  2013     1     1      859            900        -1     1223           1225
## 10  2013     1     1      921            900        21     1237           1227
## # ℹ 16,164 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

The next error is far more insidious….

17.3.2 q5 Fix a bug

This code doesn’t quite what the user intended—they were trying to filter for only those flights where the desination was Boston airport. What went wrong?

## It's more likely the user is trying to find flights to Boston;
## they just did something a bit misguided by storing LaGuardia
## in a variable named BOS
flights %>% filter(dest == "BOS")
## # A tibble: 15,508 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      559            559         0      702            706
##  2  2013     1     1      639            640        -1      739            749
##  3  2013     1     1      801            805        -4      900            919
##  4  2013     1     1      803            810        -7      903            925
##  5  2013     1     1      820            830       -10      940            954
##  6  2013     1     1      923            919         4     1026           1030
##  7  2013     1     1      957            733       144     1056            853
##  8  2013     1     1     1033           1017        16     1130           1136
##  9  2013     1     1     1154           1200        -6     1253           1306
## 10  2013     1     1     1237           1245        -8     1340           1350
## # ℹ 15,498 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

It will take practice to get used to when and when not to use quotations. Don’t worry—we’ll get lots of practice!

The filter() tool is very simple, but already allows us to do a lot: This dataset is called nycflights; in what sense is it focused on New York city? Let’s do a quick check to get an idea:

17.3.3 q6 Understand the data

Perform two filters; first filter for flights where the destination was a New York airport (JFK, LGA, or EWR), then for flights where the origin was a New York airport (the same three). Answer the questions below.

df_q6a <-
  flights %>%
  filter(
    dest == "JFK" | dest == "LGA" | dest == "EWR"
  )

df_q6b <-
  flights %>%
  filter(
    origin == "JFK" | origin == "LGA" | origin == "EWR"
  )

Use the following code to check your answer.

## NOTE: No need to change this!
assertthat::assert_that(
  df_q6a %>%
  mutate(flag = dest %in% c("JFK", "LGA", "EWR")) %>%
  summarize(flag = all(flag)) %>%
  pull(flag)
)
## [1] TRUE
assertthat::assert_that(
  df_q6b %>%
  mutate(flag = origin %in% c("JFK", "LGA", "EWR")) %>%
  summarize(flag = all(flag)) %>%
  pull(flag)
)
## [1] TRUE
print("Nice!")
## [1] "Nice!"

Observations - Was this dataset assembled to study flights out of NYC, or into NYC? How do you know? - The fact that all observations have their origin in NYC highlights (but does not itself prove!) that these data were collected to study flights departing from the NYC area.

Aside: Data are not just numbers. Data are numbers with context. Every dataset is put together for some reason. This reason will inform what observations (rows) and variables (columns) are in the data, and which are not in the data. Conversely, thinking carefully about what data a person or organization bothered to collect—and what they ignored—can tell you something about the perspective of those who collected the data. Thinking about these issues is partly what separates data science from programming or machine learning.

17.4 arrange() rows

One more simple tool; rather than remove rows, we can re-arrange rows with arrange() to see what comes to the top. arrange() takes a set of columns by which to sort the data. For instance, we can find the earliest-departing flights with arrange(dep_delay).

## NOTE: No need to edit
flights %>% 
  arrange(dep_delay)
## # A tibble: 336,776 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013    12     7     2040           2123       -43       40           2352
##  2  2013     2     3     2022           2055       -33     2240           2338
##  3  2013    11    10     1408           1440       -32     1549           1559
##  4  2013     1    11     1900           1930       -30     2233           2243
##  5  2013     1    29     1703           1730       -27     1947           1957
##  6  2013     8     9      729            755       -26     1002            955
##  7  2013    10    23     1907           1932       -25     2143           2143
##  8  2013     3    30     2030           2055       -25     2213           2250
##  9  2013     3     2     1431           1455       -24     1601           1631
## 10  2013     5     5      934            958       -24     1225           1309
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

Aside: What flight leaves 43 minutes early? That’s crazy!!

We can also use arrange(desc(x)) to reverse the sort.

## NOTE: No need to edit
flights %>% 
  arrange(desc(dep_delay))
## # A tibble: 336,776 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     9      641            900      1301     1242           1530
##  2  2013     6    15     1432           1935      1137     1607           2120
##  3  2013     1    10     1121           1635      1126     1239           1810
##  4  2013     9    20     1139           1845      1014     1457           2210
##  5  2013     7    22      845           1600      1005     1044           1815
##  6  2013     4    10     1100           1900       960     1342           2211
##  7  2013     3    17     2321            810       911      135           1020
##  8  2013     6    27      959           1900       899     1236           2226
##  9  2013     7    22     2257            759       898      121           1026
## 10  2013    12     5      756           1700       896     1058           2020
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

Aside: A 21.6 hour delay sounds like hell.

Now I know what you’re thinking: “desc() seems silly; why not just arrange(-x)?”

Ah, but what about using arrange(s) with string data? How will you take a negative string? You can’t! But you can use arrange(desc(s)) to sort in reverse alphabetical order:

## NOTE: No need to edit
flights %>% 
  arrange(desc(carrier)) %>% 
  select(carrier, everything())
## # A tibble: 336,776 × 19
##    carrier  year month   day dep_time sched_dep_time dep_delay arr_time
##    <chr>   <int> <int> <int>    <int>          <int>     <dbl>    <int>
##  1 YV       2013     1     3     1428           1435        -7     1539
##  2 YV       2013     1     3     1551           1602       -11     1659
##  3 YV       2013     1     4     1430           1435        -5     1546
##  4 YV       2013     1     4     1731           1602        89     1837
##  5 YV       2013     1     6     1557           1605        -8     1714
##  6 YV       2013     1     7     1430           1435        -5     1541
##  7 YV       2013     1     7     1556           1602        -6     1721
##  8 YV       2013     1     8     1432           1435        -3     1537
##  9 YV       2013     1     8     1555           1602        -7     1727
## 10 YV       2013     1     9     1432           1435        -3     1543
## # ℹ 336,766 more rows
## # ℹ 11 more variables: sched_arr_time <int>, arr_delay <dbl>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

17.4.1 q7 Sort to find

Sort the flights in descending order by their air_time. Bring air_time, dest to the front. What can you tell about the longest flights?

df_q7 <-
  flights %>%
  select(air_time, dest, everything()) %>%
  arrange(desc(air_time))
df_q7
## # A tibble: 336,776 × 19
##    air_time dest   year month   day dep_time sched_dep_time dep_delay arr_time
##       <dbl> <chr> <int> <int> <int>    <int>          <int>     <dbl>    <int>
##  1      695 HNL    2013     3    17     1337           1335         2     1937
##  2      691 HNL    2013     2     6      853            900        -7     1542
##  3      686 HNL    2013     3    15     1001           1000         1     1551
##  4      686 HNL    2013     3    17     1006           1000         6     1607
##  5      683 HNL    2013     3    16     1001           1000         1     1544
##  6      679 HNL    2013     2     5      900            900         0     1555
##  7      676 HNL    2013    11    12      936            930         6     1630
##  8      676 HNL    2013     3    14      958           1000        -2     1542
##  9      675 HNL    2013    11    20     1006           1000         6     1639
## 10      671 HNL    2013     3    15     1342           1335         7     1924
## # ℹ 336,766 more rows
## # ℹ 10 more variables: sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## #   flight <int>, tailnum <chr>, origin <chr>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>

Use the following to check your work

## NOTE: No need to change this!
assertthat::assert_that(
  assertthat::are_equal(
    df_q7 %>% head(1) %>% pull(air_time),
    flights %>% pull(air_time) %>% max(na.rm = TRUE)
  )
)
## [1] TRUE
assertthat::assert_that(
  assertthat::are_equal(
    df_q7 %>% filter(!is.na(air_time)) %>% tail(1) %>% pull(air_time),
    flights %>% pull(air_time) %>% min(na.rm = TRUE)
  )
)
## [1] TRUE
assertthat::assert_that(
  assertthat::are_equal(
    names(df_q7)[1:2],
    c("air_time", "dest")
  )
)
## [1] TRUE
print("Great job!")
## [1] "Great job!"

The longest flights are to “HNL”; this makes sense—Honolulu is quite far from NYC!