27 Data: Separate and Unite Columns

Purpose: Data is easiest to use when it is tidy. In fact, the tidyverse (including ggplot, dplyr, etc.) is specifically designed to use tidy data. Last time we learned how to pivot data, but data can be untidy in other ways. Pivoting helped us when data were locked up in the column headers: This time, we’ll learn how to use separate and unite to deal with cell values that are untidy.

Reading: (None, this is the reading)

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.0.4     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

27.1 Punnett Square

Let’s make a Punnett square with unite and some pivoting. You don’t need to remember any biology for this example: Your task is to take genes and turn the data into punnett.

punnett <-
  tribble(
    ~parent1,   ~a,   ~A,
         "a", "aa", "aA",
         "A", "Aa", "AA"
  )
punnett
## # A tibble: 2 × 3
##   parent1 a     A    
##   <chr>   <chr> <chr>
## 1 a       aa    aA   
## 2 A       Aa    AA
genes <-
  expand_grid(
    parent1 = c("a", "A"),
    parent2 = c("a", "A")
  )
genes
## # A tibble: 4 × 2
##   parent1 parent2
##   <chr>   <chr>  
## 1 a       a      
## 2 a       A      
## 3 A       a      
## 4 A       A

To do this, we’ll use separate and unite.

27.2 Separate

The separate helper takes a string column and separates it on a specified character. For instance, if we had a set of phone numbers with -’s, we could separate them into components:

tibble(digits = c(
  "814-255-1234",
  "650-123-4567",
  "617-867-5309"
)) %>% 
  separate(
    col = digits,
    into = c("area_code", "telephone_prefix", "line_number"),
    sep = "-",
  )
## # A tibble: 3 × 3
##   area_code telephone_prefix line_number
##   <chr>     <chr>            <chr>      
## 1 814       255              1234       
## 2 650       123              4567       
## 3 617       867              5309

The sep argument is quite versatile. We can also use the special argument sep = "" to separate every letter in the string. Note that we’ll get funny behavior if the strings are different lengths:

tibble(s = c(
  "abc",
  "def",
  "yz"
)) %>% 
  separate(
    col = s,
    into = c("1", "2", "3"),
    sep = ""
  )
## Warning: Expected 3 pieces. Additional pieces discarded in 2 rows [1, 2].
## # A tibble: 3 × 3
##   `1`   `2`   `3`  
##   <chr> <chr> <chr>
## 1 ""    a     b    
## 2 ""    d     e    
## 3 ""    y     z

We can also specify sep as a string location. For instance, we could use this to “peel” off the leading characters of the strings:

tibble(s = c(
  "a1",
  "a5",
  "b11",
  "b23",
  "c300"
)) %>% 
  separate(
    s,
    into = c("letter", "number"),
    sep = 1
  ) %>% 
  mutate(number = as.integer(number))
## # A tibble: 5 × 2
##   letter number
##   <chr>   <int>
## 1 a           1
## 2 a           5
## 3 b          11
## 4 b          23
## 5 c         300

Note that separte() won’t convert the strings for us! We’ll need to mutate() if we’ve separated out numeric values.

27.3 Unite

The unite() helper “undoes” a separation by uniting two or more string columns. We could use this build up a phone number from parts:

tribble(
  ~area_code, ~telephone_prefix, ~line_number,
       "814",               "255",       "1234",
       "650",               "123",       "4567",
       "617",               "867",       "5309"
) %>% 
  unite(
    col = "number",
    area_code, telephone_prefix, line_number,
    sep = "-"
  )
## # A tibble: 3 × 1
##   number      
##   <chr>       
## 1 814-255-1234
## 2 650-123-4567
## 3 617-867-5309

27.3.1 q1 Use a combination of unite and pivoting to turn genes into the same dataframe as punnett.

df_q1 <-
  genes %>%
  unite(col = "offspring", sep = "", remove = FALSE, parent1, parent2) %>%
  pivot_wider(
    names_from = parent2,
    values_from = offspring
  )

df_q1
## # A tibble: 2 × 3
##   parent1 a     A    
##   <chr>   <chr> <chr>
## 1 a       aa    aA   
## 2 A       Aa    AA

Use the following test to check your answer:

## NOTE: No need to change this
assertthat::assert_that(
              all_equal(df_q1, punnett)
)
## Warning: `all_equal()` was deprecated in dplyr 1.1.0.
## ℹ Please use `all.equal()` instead.
## ℹ And manually order the rows/cols as needed
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [1] TRUE
print("Well done!")
## [1] "Well done!"

27.4 Alloys, Revisited

In the previous data exercise, we studied an alloys dataset:

## NOTE: No need to edit; execute
alloys_mod <- tribble(
  ~thick,  ~E00,  ~mu00,  ~E45,  ~mu45, ~rep,
   0.022, 10600,  0.321, 10700,  0.329,    1,
   0.022, 10600,  0.323, 10500,  0.331,    2,
   0.032, 10400,  0.329, 10400,  0.318,    1,
   0.032, 10300,  0.319, 10500,  0.326,    2
)
alloys_mod
## # A tibble: 4 × 6
##   thick   E00  mu00   E45  mu45   rep
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.022 10600 0.321 10700 0.329     1
## 2 0.022 10600 0.323 10500 0.331     2
## 3 0.032 10400 0.329 10400 0.318     1
## 4 0.032 10300 0.319 10500 0.326     2

This slightly modified version of the data no longer has a convenient separator to help with pivoting. We’ll use a combination of pivoting and separate to tidy these data.

27.4.1 q2 Use a combination of separate and pivoting to tidy alloys_mod.

df_q2 <-
  alloys_mod %>%
  pivot_longer(
    names_to = "varang",
    values_to = "value",
    cols = c(-thick, -rep)
  ) %>%
  separate(
    col = varang,
    into = c("var", "ang"),
    sep = -2,
    convert = TRUE
  ) %>%
  pivot_wider(
    names_from = var,
    values_from = value
  )

df_q2
## # A tibble: 8 × 5
##   thick   rep   ang     E    mu
##   <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.022     1     0 10600 0.321
## 2 0.022     1    45 10700 0.329
## 3 0.022     2     0 10600 0.323
## 4 0.022     2    45 10500 0.331
## 5 0.032     1     0 10400 0.329
## 6 0.032     1    45 10400 0.318
## 7 0.032     2     0 10300 0.319
## 8 0.032     2    45 10500 0.326

Use the following tests to check your work:

## NOTE: No need to change this
assertthat::assert_that(
              (dim(df_q2)[1] == 8) & (dim(df_q2)[2] == 5)
)
## [1] TRUE
print("Nice!")
## [1] "Nice!"